
SHORTEST PATH PLANNING

ON TOPOGRAPHICAL MAPS

A Thesis
Presented To

the Faculty of the Graduate School
University of Missouri-Columbia

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
MICHAEL A. VANPUTTE

Dr. Youssef Saab, Thesis Supervisor

MAY 1997

Approved for .„^T^—- Ior Public £te2 JTte «boae; 19970521 045

The undersigned, appointed by the Dean of the Graduate School, have examined the

thesis entitled

SHORTEST PATH PLANNING

ON TOPOGRAPHICAL MAPS

presented by Michael VanPutte

a candidate for the degree of Master of Science

and hereby certify that in their opinion it is worthy of acceptance.

fan**/- ^A
/Dr. Youssef Saj

Dr. Hongchi Shi

r. Qi Zhang

ACKNOWLEDGMENTS

I would like to thank Dr. Youssef Saab for his helpful discussions, insight, and

supervision of this research. I would also like to thank Dr. Hongchi Shi and Dr. Qi Zhang

for reviewing this thesis.

Finally, I would especially like to thank my wife Linda, and daughters Ashley and

Brianne for their continued support and love.

ABSTRACT

This thesis introduces a new algorithm for quickly answering repetitive least-cost

queries between pairs of points on the Earth's surface as represented by digital

topographical maps. The algorithm uses a three-step process; preprocessing,

geometrically modified Dijkstra search, and postprocessing. The preprocessing step

computes and saves highly valuable global information that describes the underlying

geometry of the terrain. The search step solves shortest path queries using a modified

Dijkstra algorithm that takes advantage of the preprocessed information to "jump"

quickly across flat terrain and decide whether a path should go over or through a high-cost

region. The final step is a path improvement process that straightens and globally

improves the path. Our algorithm partitions the search space into free regions and

obstacle regions. However, unlike other algorithms using this approach, our algorithm

keeps the option of passing through an obstacle region.

in

LIST OF TABLES

Table page

2-1 Example of an Elevation Array 3

5.1 Search Results 35

5.2 Comparison of 200 Runs of GMD vs Dijkstra Searches 36

IV

LIST OF ILLUSTRATIONS

Figure Page

2-1 Topographical Map Transformation 2

2-2 Graph Representation of an Array 3

2-3 4-Square vs. 8-Square Adjacent Nodes 4

2-4 Cost Calculations on Elevation Arrays 5

3-1 Blind Search Procedure 10

4-1 High-Cost Convex Polygon 22

4-2 The Partitioned Map 22

4-3 Shortest Path Cost Ragged Array 23

4.4 Search Through a Single Polygon 26

4-5 Postprocessing 29

5-1 3-Dimensional Representation of Elevation Array 31

5.2 2-Dimensional Map Representation 32

5.3 Path Avoiding Polygons 38

5.4 Start and End Inside Polygons 39

5.5 Search With Large High-Cost Regions 40

5.6 Example of Postprocessing 41

TABLE OF CONTENTS

ACKNOWLEDGMENTS ü

ABSTRACT iü

LIST OF TABLES iv

LIST OF ILLUSTRATIONS v

Chapter

1. INTRODUCTION 1

2. THE PROBLEM 2

Topographical Maps

Cost

Dynamic Obstacles

Types of Surface Terrain

Applications

3. BACKGROUND 9

General

Blind Search on the State Space

All-Pair Shortest Path

Motion Planning

Potential Fields

Geometric Techniques

Edge Detection - Computer Vision

vi

4. GEOMETRICALLY GUIDED SEARCH ALGORITHM 20

Bounding High Cost Terrain - Preprocessing

Search Procedure

Path Improvement - Postprocessing

Summary

5. EXPERIMENTAL RESULTS 31

Implementation

Test Method

Preprocessing

Search

Postprocessing

6. RECOMMENDATIONS FOR FUTURE WORK/ CONCLUSION 42

Conclusion

Future Work

APPENDIX 45

BIBLIOGRAPHY 46

Vll

Chapter 1

INTRODUCTION

Finding the least cost path is a challenging classical problem in computer science.

For decades research has been conducted to solve the least cost path problem under a

variety of situations. Today many real-time decision-making applications do repetitive

mode queries, solving many shortest-path problems while generating a solution to a larger

problem. Decreasing the effort when finding a path can greatly improve the overall

performance of these software systems.

Many methods are currently used to find the least-cost path from a single source to

a single goal on a two-dimensional representation of a surface. Current research in

shortest path planning primarily consists of a node generating blind search or complete

obstacle avoidance. Both techniques have benefits and hazards when applied to

topographic path planning. This thesis presents a new algorithm that quickly finds a near

optimal path. Our algorithm combines the benefits of node generating searches with

geometric techniques to quickly find a near optimal least cost path.

Chapter 2

THE PROBLEM

2.1 Topographical Maps

The domain consists of a topographical map, a cellular-decomposition

representation of the earth's surface [1]. This map has two degrees of freedom x and y,

looking down perpendicular on the environment. The variables x and y map to the

elevation of the terrain, the z coordinate.

Figure 2-1 Topographical Map Transformation

The elevations found on the topographical map are used to construct the terrain

matrix database or elevation array. Each {x,y} entry in the database corresponds to the

average elevation (z value) for the corresponding piece of terrain.

Table 2-1 Example of an Elevation Array

X
1 2 3 4 5

Y

1 10 12 12 14 15
2 12 12 12 16 14
3 13 14 13 14 13
4 16 17 14 12 12
5 20 23 16 14 10

This thesis is only concerned with the elevation above sea-level. Many other

features can be analyzed, such as surface type, vegetation, pollution, or population data.

This abstraction of the terrain permits rapid computation and problem solving. More

information on geocoding, the process of creating a digitized representation of the Earth's

surface, can be found in [2] and [3].

Figure 2-2 Graph Representation of an Array

The elevation array can be transformed into a simple graph. The {x,y} coordinates

in the matrix correspond to vertices on a simple graph and are called nodes. The grid

creates a regular lattice with diagonal arcs, such that each node is connected to its eight

adjacent nodes [4]. From any location on the map (except those on the perimeter of the

map) one can move to eight adjacent locations (North, Northeast, East. . .). The use of

the eight squares rather than four squares better models how objects move on the Earth's

surface.

P P

4-square 8-square

indicates point is adjacent to P

Figure 2-3 4-Square vs. 8-Square Adjacent Nodes

2.2 Cost

Crossing terrain requires the expenditure of energy. Climbing a hill costs more

than walking down a hill, which costs more than moving over flat terrain (assuming a

driver applies brakes and steering to maintain control of a descending vehicle). This

expenditure is the cost to move from one vertex to another. If the slope and resultant

cost between two vertices is too high, then the terrain is too steep to travel over safely,

and the edge between the two vertices is removed. The cost to traverse the terrain is not

explicitly stated in the database, but is a function of the change in elevation of two

adjacent vertices.

Elevation arrays commonly used in terrain analysis applications produce a "digital

bias" [5]. Although some algorithms return a shortest path as an ordered set of adjacent

nodes, they do not produce a Euclidean shortest path. Figure 2.4a represents an elevation

array of a flat plane. All direct paths from the start point S to the goal point G in the

polygon bound by SAGB have the same length, 8.828. In figure 2.4b, path 2 is a more

direct path than path's 1 or 3, yet all have the same length. Figure 2.4c shows the true

shortest distance on the same plane. The line segment S->G is an example of the saying,

"The shortest distance between two points is a straight line." A shortest path is then

defined as the shortest ordered set of line segments from S to G.

"2 Z (a)

COSt =6 + 2 JT
= 8.828

^G

S^

(b)

(c)

COSt= ^ATZ+A7Z

= 8.246

Figure 2-4 Cost Calculations on Elevation Arrays

On a flat plane the true cost is the Euclidean length of the path. On rolling terrain,

or terrain that changes elevation, the cost is a function of the change in elevation of each

point. Constraints imposed by the system which traverses the terrain must also be taken

into account when developing the shortest path.

2.3 Dynamic Obstacles

In nontrivial applications additional obstacles may be created and destroyed at

runtime. The ability to create and destroy dynamic obstacles permits users to analyze

situations and perform "what-if' analysis. Examples of dynamic obstacles are polluted

areas in cities, minefields encountered or planned in military mission planning, and air

corridors closed due to bad weather.

The term dynamic obstacles as used in this thesis should not be confused with

dynamic obstacles used in robot motion planning. The field of motion planning refers to

dynamic obstacles as objects that move about the search space while a search is being

performed [6]. Finding a path across town for an automobile in the presence of

pedestrians is an example of dynamic obstacles used in motion planning. This thesis is

concerned with finding an algorithm that will quickly find a path in the presence of terrain

features and temporary impenetrable obstacles.

On a typical real-time application a user may add, move, or delete hundreds of

these temporary dynamic obstacles while doing an analysis. These impenetrable obstacles

are considered barriers that must be bypassed. The constraints imposed by dynamic

obstacles have a significant effect on the algorithm analysis for this problem.

2.4 Types of Surface Terrain

The Earth's surface has a variety of features and terrain types ranging from flat

plains to very rough mountain ranges. The shortest path on flat plains represents a trivial

problem, being a straight line. Mountain ranges represent the other extreme, where the

shortest path is much more difficult to compute.

This thesis will focus on valley floors of desert plains, as found in the Mojave

Desert of Southern California. These valleys are surrounded by very steep, impenetrable

mountain ranges. The valley floors are roughly planar, with hills and outcroppings

interspersed. This abstraction of the environment's surface is sufficient for introductory

research, yet remains computationally challenging.

2.5 Applications

Shortest path algorithms are used in geographic information systems, military

mission planning systems, autonomous robot route planning systems, terrain following

"nap-of-the earth" aircraft route planning and city regional planning systems. Huge

elevation databases have been developed by the U.S. Defense Mapping Agency [2] for use

in both civilian and government applications. These data bases provide a rich area for

theoretical and practical work on digital representations of real terrain.

Other areas of shortest path applications similar to this domain include:

• Shipping/Distribution Problem—planning the movement of products from a
factory to a warehouse [7].

• Economics—building a network of nodes where each node represents a state,
and edges represent costs to achieve future states. A decision at a node to take
an edge transforms the problem to a future state. The goal is to find the
shortest path that maximizes a future profit[7].

7

Critical Path Analysis—performing operations research and planning analysis
inmanagement[7].

Circuit Board Layout and VLSI Design—hills represent electrical
components on the circuit board and paths over hills represent jumper wires

[8].

Automated Traveling Advisory System—costs represent distances and
dynamic obstacles represent potentially hazardous weather [8].

Remote Sensing—determining surface properties from images [9].

Chapter 3

BACKGROUND

3.1 General

A technique to improve performance on repetitive-mode query applications is to

precompute some information on the problem, and use that information to prune the

search. One extreme is to precompute and store the entire finite set of all possible queries,

providing an immediate access time with a very large storage overhead. The other

extreme is to eliminate the precompute step and compute the entire solution with a high

response time and no precomputation cost or storage overhead. The optimal solution is

somewhere in the middle of these two extremes; use some initial precomputation effort

and storage overhead to obtain a long-term gain in search time [10].

Shortest path research generally falls into two categories:

• Blind Search over the State Space. These algorithms build a search tree
superimposed over the state space. They conduct a blind search through the
state space one node at a time without using global knowledge of the entire
problem. These algorithms return optimal solutions, but are computationally
and memory expensive.

• Perfect Obstacle Avoidance on a Plane. These algorithms partition the
domain space into perfect obstacles and perfect free space. The search for the
best path avoids obstacles at all cost without checking if the path should go
over an obstacle rather than around. Precomputed information are either paths
that avoid obstacles or obstacle boundaries that must be avoided. Obstacle
avoiding algorithms return quick solutions, but may overlook "short cuts"
through obstacles that lead to globally optimal solutions.

Before proceeding, the following notation is defined. The size of the elevation

array database is N. The value of N is equal to the number of columns in the array

multiplied by the number of rows. This N is also equal to the number of nodes in the state

space of a graph representation of the elevation array.

3.2 Blind Search on the State Space

Blind search algorithms, or "informed best-first search algorithms "[11], represent

one extreme to the solution of the shortest path problem. These blind searches, whether

Dijkstra's algorithm, best-first, A*, or bidirectional A* [12] are essentially a modified

Dijkstra algorithm. These algorithms build a search tree superimposed on the state space.

The leaf nodes are nodes of the tree discovered or that have no children generated, and are

maintained on an open list. Nodes that have been expanded are called inner nodes and are

maintained on a closed list [8]. These algorithms use no precomputed information,

computing the entire solution to a query on demand.

Initial State

LeafNodes

Goal State

Figure 3-1 Blind Search Procedure

Heuristic search algorithms are called informed searches in the artificial intelligence

community [8]. This term is misleading since heuristic searches have no information

10

except that found in the state definitions and the operators that change the states.

Although heuristic searches have problem specific knowledge embedded in the operators

[4] that causes them to search more efficiently than "uninformed" searches (breadth-first

and depth-first), they do not use global knowledge inherent to the specific problem.

These algorithms use a priority scheduling algorithm to select the next node for

expansion, determine which adjacent children of a node are to be generated, and place

generated nodes onto the priority queue. These algorithms suffer from the same lower-

bound best-first time 0(n log n) where n is the number of nodes generated. This worst

time is due to the management of the open-list [8]. Research has led to improving the

heuristic used for placing a node onto the priority queue and bounding the search region

[13].

Although all of the algorithms may return an optimal solution providing they have

an admissible heuristic, they all suffer from serious inefficiencies. These flaws include:

1. Time~The number of nodes generated and expanded is large which implies long
search time. Often such algorithms waste time exploring unnecessary nodes in
terrain databases.

2. Space-These heuristic algorithms maintain all nodes generated and expanded in
memory, which is a major constraint for any large map. Storing pointers and cost
labels is a major drain on memory resources, causing the algorithm quickly to run
out of memory on long searches.

3. Ties on the priority queue and the order that nodes are created cause an arbitrary
implied ordering. This may result in search paths predisposed toward one
direction [11].

11

Several ideas have been tried to improve heuristic searches. Techniques include

generating the best child of a node (which does not guarantee to return optimal solution

due to the horizon effect) and not searching the open or closed list that results in duplicate

storage of identical nodes [8].

3.3 All-Pair Shortest Path

The all-pair shortest path represents the other extreme to the shortest path

problem. This algorithm precomputes the shortest path among all pairs of N points on a

map, and saves the result to secondary storage. This algorithm has two extreme costs, the

effort to precompute all of the shortest paths between N points and the storage of the

solutions. The all-pair shortest path can be computed naively using a repeated Dijkstra's

algorithm in 0(N2 log N) time. The storage for the N2 paths is 0(N3). By storing only an

intermediate node m on the shortest path from i^j into an array A[i,j]=m, the shortest

paths can be constructed by recursive queries to A[]. The array would require a total

storage of size 0(N2).

This trivial solution has two disadvantages that eliminate it as a practical solution.

Dynamic obstacles may be inserted, deleted, or moved on the terrain at runtime, which

will eliminate precomputed shortest path solutions. A possible alternative is to

precompute and store some shortest paths. This would involve preprocessing critical

shortest paths between nodes and storing the preprocessed data efficiently. This solution

also relies on secondary storage (since searching will still need to be done for nodes not

precomputed) and suffers from the dynamic obstacle problem.

12

3.4 Motion Planning

Extensive research has been conducted in motion planning. Much of the research

involves robot manipulator planning or perfect polygon-obstacle avoidance [6]. Latombe

even goes as far as to define motion planning as "planning a collision free path for rigid

objects among static impenetrable obstacles" [14].

Motion planning is performed on a planar map. The configuration space is the

transformation from the real space of the earth's surface to another space where the robot

is considered a point. The "difficult" terrain is surrounded by a perimeter considered

impenetrable, creating obstacle regions. These perfect obstacle regions may be created by

bounding the obstacle space with circles [15], minimum enclosed rectangles [16] or

convex regions [17]. The problem becomes the finding of the shortest path between two

points in a fixed environment with a collection of disjoint, impenetrable, immobile

obstacles [18].

3.4.1 Skeletonization.

Skeletonization is a class of algorithms that precompute some information and uses

this precomputed information to decrease response time to queries. Two techniques

applicable to topographic map research are visibility graphs and Voronoi diagrams. Both

techniques require a free space/obstacle space representation of the search space. These

techniques precompute a network (the skeleton) which represents a global overview of the

terrain. The path from a start point S to a goal point G is found in three steps. First a

minimal path is found from S to the skeleton, the intersection being Ii. Next a minimal

13

path is found from G to the skeleton with the point of intersection being I2. Finally a path

is found using graph theory from Ii to I2.

Visibility graphs take the planar map and perfect obstacle regions and create a

graph whose edges connect all pair of boundary corners that are visible from each other

[19]. Extensive research has been done on the use of visibility graphs.

Voronoi diagrams are networks consisting of a set of points equal distance from

two or more object features [10]. Paths found on Voronoi diagrams appear to travel

down the middle of valleys avoiding obstacles.

Both visibility graphs and Voronoi diagrams have the benefit of capturing the

global topology, thus finding paths quickly, although the resulting paths may be far from

optimal.

3.4.2 Cellular Decomposition

The cellular decomposition algorithm [20] must also be given the free space and

obstacle space representation as input. These algorithms divide the entire state space into

cells, and build a connectivity graph of adjacent cells. The shortest path is found by a

simple graph search through the connectivity graph. Schwartz's papers [19] on the

collision-free path problem termed the "Piano-Movers problem" is considered a classic in

motion planning. Quad-trees are another version of the cellular decomposition solution

[6].

Although all of the preceding algorithms work very efficiently for perfect,

impenetrable obstacles on a planar map, they do not work for this problem domain. The

14

input for these algorithms requires the creation of impenetrable obstacle regions that

cannot be traversed. One approach is to designate any region whose minimal elevation

exceeds a threshold value. This approach may lead to a locally optimal, low quality

solution, when a more optimal decision is to go over a small ridge than around it. A robot

centered at the base of a very long ridge whose elevation narrowly exceeds the threshold

would choose to go around the ridge when finding a point to cross over the ridge may be

much shorter. A second limitation is that these algorithms do not permit the start point or

end point to be inside an obstacle region. These constraints are too excessive for practical

applications on terrain.

A more serious limitation of the skeletonization algorithms is the introduction of

dynamic obstacles. If a dynamic obstacle is placed on a point on the map that intersects a

segment of the network then this segment of the network is no longer usable. Two

techniques can deal with this situation; find an alternate route or calculate a bypass. A

significant portion of the visibility graph or connectivity graph (on the cellular

decomposition) may need to be recomputed every time a dynamic obstacle is introduced

or deleted. These computations every time a dynamic obstacle is created, moved, or

destroyed are very expensive in time and space, and may result in excessive computations

to maintain the networks.

3.4.3 Weighted Region

In weighted region algorithms the plane is divided into regions with weights

representing terrain features. The weights are the costs to move per unit distance across

15

the terrain. Dynamic obstacle regions would be given the weight infinity. This technique

turns out to be no more than conducting a blind search using Dijkstra or other technique.

The "good runner—poor swimmer" problem and the "maximum concealment" problems

are both solved on terrain maps using the weighted region algorithm. The weighted

region algorithm can be converted into a graph problem by transforming the regions with

equal weights into polygons and performing a graph search[5].

The weighted region algorithm is not applicable to this thesis because of its

technique of modeling cost. Cost on weighted regions is the value ofthat piece of terrain

in an array (a node in a graph). Cost on the elevation array is the change in elevation

between two points (the edge that connects two vertices). The cost to get to a piece of

terrain is dependent on the direction used to move to that piece of terrain. This

observation eliminated weighted regions as a possible solution.

3.5 Potential Fields

Potential fields calculate a scalar quality for every point on the terrain surface.

This quantity is zero at the goal, a very high value at obstacles, and decreases as a point

moves away from obstacles toward the goal. The path from the start to the goal is

synonymous to a marble rolling down a hill toward the goal [21]. The value for a point

{x,y} on the ground is:

1 (number of obstacles i A y i
j-(distance ({x, y), obstacle\)J distance ({x, y},goal)

16

Potential field algorithms can deal with dynamic obstacles by setting the value of

points in dynamic obstacles to oo. A significant drawback to these algorithms is that the

entire region 0(N) must be computed for every query and every time a dynamic obstacle

is created or destroyed. This is a significant effort for a very large search space.

3.6 Geometric Techniques.

Geometric techniques can be used to find a solution on two or more dimensional

surfaces quickly. These algorithms have the benefit of using line segments and returning

paths as sequences of line segments rather than long lists of adjacent coordinates.

3.6.1 Taut String Algorithm

Given the elevation array, a free space/convex polygon obstacle space

representation of the surface is precomputed. Finding the shortest path from S-»G is

called the "taut string" approach. A path is found when a string is threaded from the start

point through the obstacles to the goal and pulled tight. The difficulty with this algorithm

is deciding how to thread the string through the obstacles, since there are an infinite

number of ways [5].

Solving the problem with simple polygons is similar, except that the number of

points to store, and the computation effort is significantly more. It should be noted, that a

line segment will not enter the concave portion of a simple polygon when finding the

shortest path unless the start and goal are inside the concave portion [10]. This

observation will be used later in this thesis.

17

3.6.2 Shortest Path on a Surface.

The elevation database is transformed into a 3-dimensional representation of the

surface. Techniques include flat plane and cylinders [5] and polyhedral surfaces with

faces. These algorithms are related to triangulated irregular networks (TIN) in geography

[2].

Many algorithms have been found that make a good quick initial guess to the

solution, followed by a path improvement algorithm. Kimmers continuing research has

had success finding the shortest path on a 3-dimensional polyhedral surface. This

approach was stated as useful in CAD and land-surveying applications.

3.7 Edge Detection - Computer Vision

Edge detection is a crucial part to any computer vision system, where they are

used to build objects that are then analyzed. Edge detection is used in optical character

recognition, signal processing, robot vision and industrial inspection, and remote sensing.

Computer vision algorithms use a variety of data structures (square, triangular, hexagonal)

and techniques to build and manipulate these structures [9]. The technique of edge

detection and region analysis in computer vision can be used to bound high-cost regions.

These techniques take key points on the terrain map and combine them into sets of closed

line segments that represent simple polygons.

Although these techniques do not represent a shortest path problem-solving

strategy, they do suggest techniques and data structures that can be used to precompute

18

information about the global characteristics of the terrain. This precompiled information

can be saved and used in a shortest path algorithm.

In an attempt to avoid the above noted problems, research was focused on

combining the procedures of node generating search with geometric techniques. By

combining these techniques it is possible to find a near optimal shortest path quickly that is

not adversely effected by dynamic obstacles.

19

Chapter 4

GEOMETRICALLY GUIDED SEARCH ALGORITHM

The central idea to this new algorithm is to exploit as much global information that is

available about the terrain to make a quick, high-quality decision. A value in the elevation

array describes the characteristics of the piece of terrain that value represents, while

implicitly describing the relationship the piece of terrain has to its neighbors. This

algorithm begins by taking a step back and examining the entire terrain, looking for

regions a path "might" not want to travel through, and stores these precomputed high-cost

regions for future use. This precomputing is synonymous with a person performing a

quick terrain analysis before trying to solve a geographic problem. A terrain analysis

permits the system to exploit the underlying geometry of the terrain rather than

concentrating on single points on the ground. In repetitive mode applications this initial

cost of preprocessing and storage provides a long-term gain in searching.

This algorithm solves the shortest path problem in three steps. First, highly valuable

global information about the terrain is precomputed. In this step the high-cost regions are

found and saved as closed convex polygons. The next phase computes and saves the cost

for paths among all points on the perimeter of the polygons.

The second step of the algorithm involves solving search queries. The algorithm

projects the polygons onto a plane and searches for the shortest path by projecting a line

20

segment from the start point to the goal across the plane. If the line intersects a polygon,

the algorithm determines if going over is shorter than around the region, using the

precomputed global information. In the final step the algorithm does a path-improvement,

postprocessing step to globally improve the path found. The algorithm quickly returns an

approximate shortest path.

4.1 Bounding High Cost Terrain -- Preprocessing.

Given an elevation array, the algorithm bounds high cost regions with convex

polygons. These convex polygons are similar to contour intervals or iso-elevation curves

found on geography maps[2]. This preprocessing step is performed once with the high-

cost regions saved and used during path finding queries.

The decision to use convex polygons over simple polygons was due to the smaller

space and reduced computational complexity of convex polygons. A shortest path

between two points will not enter the concave portion of a simple polygon unless the start

or end points are contained inside the concave region. The storage of convex polygons is

significantly smaller (fewer numbers of points on the perimeter), and computations are

significantly faster and less complex than similar computations using simple polygons.

21

starts

High cost region

j> goal

Covex polygon
perimeter

Figure 4-1 High-Cost Convex Polygon

High cost regions are found by slicing the terrain with two parallel horizontal planes.

All points between the planes are considered low-cost terrain points. All points above the

upper plane and below the lower plane are considered high cost terrain points. High cost

terrain points that are in close proximity are bound by a convex polygon. These polygons

are saved as the obstacle space.

upper plane

lower plane

high cost regions

Figure 4-2 The Partitioned Map

For this thesis the two planes are the base plane of the topographic map and a

horizontal plane at an elevation 8. The 8 value is a subjective elevation above which paths

do not tend to enter because of the costs incurred. The intersection of the plane at 8 and

22

any high cost region is a contour, a simple polygon, which can be transformed into a

convex polygon using Graham's Scan[10].

The next step to preprocessing is computing the shortest path cost among all pairs of

perimeter points for each convex polygon. The shortest paths are stored in a ragged array

[22] as in figure 4.3. If i and j are coordinates on the polygon perimeter, then the entry in

row i, column j is equal to the entry in row j, column i. Both values do not need to be

stored, so only -n(n -1) entries are necessary per polygon where n is the number of

points on a polygon perimeter.

a | b | c | d
a
b~ 1
 I

d ■
Figure 4-3 Shortest Path Cost Ragged Array

4.2 Search Procedure

A uniform cost horizontal plane is used representing the low-cost terrain. The convex

polygons, representing the high cost regions, are projected onto this plane. Given a start

point and a goal point, a line segment is projected between these two points. If the line

segment intersects a polygon, the algorithm determines if going around to the left, to the

right, or over the region is best.

Labels on the map represent known costs from the start point to the node. All points

on the terrain map begin unlabeled, and only explored nodes get labeled which eliminates

23

initializing the entire map. The below algorithm applies to cases where the start and goal

are outside polygons. Additional steps are necessary if the start or goal are inside

polygons. The search algorithm requires three functions; add_or_relabel(),

process_line(), and search_routine().

Given a point x on the map, a cost label c, and a priority-queue Q, add_or_relabel

determines if a new path to x with cost c is a new or better path to x. If x has not been

labeled before, it is labeled with cost c and pushed to the priority queue. If x has been

labeled and c is less than the old label then x is relabeled and repositioned in Q based upon

this new label. A point on the perimeter of a polygon is said to be visible from G, if

ignoring all other polygons, a line segment can be drawn from G to the point without

entering the polygon. Procedure add_or_relabel() is only called for the start point, goal

point, and points on the perimeter of a polygon that are visible from the goal.

Procedure add_or_relabel(x, c, Q)
Input; A point on the map x, a cost label c, and a priority queue Q

begin
if x is not labeled then

label(x) = c
Q<-x

else if 1 < label(x) then
label(x) = c
reposition x in Q

end

The function process_line() takes a start point s, a goal G, and the priority queue Q.

Processjine uses a stack to store lines(start,goal) that it is currently processing. It pops a

line segment off the stack and checks if the line intersects a polygon. If the line does not

24

intersect a polygon it sends the point and its newly computed label to add_or_relabel(). If

the line intersects a polygon then the function computes the cost to get to three points on

the polygon perimeter visible from G, and sends these three points to add_or_relabel().

These three points represent the paths to go through, around to the left, and around to the

right of the polygon.

Procedure process line(x, G, Q)
Input: A point x that is either a start point or a point on a polygon visible from
G, the main goal point G, and a priority queue Q

function d(a->b) distance from a to b
saved[a,b] = precomputed cost of path for points a,b on perimeter of p

begin
stack = 0
stack <- (x,G)
while stack * 0 do

begin
(s,g) <- stack
if line(s,g) does not intersect any polygon then

add_or_relabel(s,l(s) + d(s,g), Q)
else /* refer to figure 4.4 */

let p be the first polygon intersected on line(s,g)
let Fl and F2 be the intersection of line(s,g) with the boundary of p.

Fl is on side of S and F2 on side of G
add_or_relabel(F2, l(s) + d(s->Fl) + saved[Fl,F2], Q)
if line(s,tl) does not intersect any polygon then

find nearest boundary point tpl of p visible from G
add_or_relabel(tpl, l(s) + d(s->tl) + saved[tl,tpl], Q)

else
stack <- (s,tl)

if line(s,t2) does not intersect any polygon then
find nearest boundary point tp2 of p visible from G
add_or_relabel(tp2, l(s) + d(s->t2) + saved[t2,tp2], Q)

else
stack <- (s,t2)

end
end

25

Process_line() uses a function d(a,b) which calculates the Euclidean distance from a to

b. It also uses the precomputed polygon path costs maintained in saved[a,b], where a,b

are points on the perimeter of polygons.

The function search_routine() is the main search routine. This function is sent the start

and goal points for a path query, The function terminates when it finds its best path.

Procedure search_routine(S,G)
Input: Points on the map S,G

begin
Q<-x
while Q * 0 do

begin
x<-Q
process_line(x,G,Q)

end
end

+ G

Figure 4-4 Search Through a Single Polygon

This algorithm resembles a Dijkstra's algorithm that begins at S. Unlike traditional

Dijkstra's that at one step only examines its eight adjacent nodes, this algorithm only

examines the nodes visible from G on the perimeter of an intersecting polygons. These

26

descendant nodes are points visible from G and are labeled with a cost and a pointer to

their ancestor. These descendant nodes are pushed onto a priority queue and the next

node explored is the node on the queue with the lowest cost. When process_line() is

called from search_routine() it is sent the main goal G, and searches from the node x will

always seek G. If a node is discovered that was previously discovered and the new path

from start to the node is shorter than the previous path, the cost label and the parent

pointer are updated to reflect this better path. Using this method duplicate nodes for the

same piece of terrain are not maintained.

The algorithm does not perform node generation on relatively flat terrain but "jumps"

to another polygon or to the goal. The result is that only the start node and nodes on the

perimeter of polygons visible from G can ever be expanded. This significantly reduces the

search effort. When a line segment intersects a polygon, the precomputed costs are used

to avoid searching inside the polygon.

If a start point is inside a polygon, Dijkstra's algorithm is used to find an efficient path

out of the polygon to a point p which is visible from G. Once a path out of the polygon

has been found the algorithm solved the problem from p to G and the solution path is

S-»p-»G If the goal is inside a polygon the algorithm finds a path out of the polygon to a

point p which is visible from S and the solution is S—»p—»G.

Performance of the search algorithm is very much dependent on the terrain data. If the

input map contains no obstacles then the algorithm returns a straight line segment S-»G

If the terrain map in contained inside a single high-cost polygon then the algorithm

27

performs a Dijkstra search requiring 0(N log N) time and 0(N) space. In practice the

algorithm performs much more efficiently.

The total space required for the search is the number of nodes on the open list and the

path pointers maintained. Since searching for paths through polygons is delayed until last,

the only nodes which have pointers are nodes on the perimeter of polygons. The space

requirement therefore is O(k) where k is the number of points on the boundary of

polygons.

4.3 Path Improvement — Postprocessing

A postprocessing step is not necessary when solving a perfect-obstacle, shortest path

problem. The resultant path segments always start and end on polygon perimeters, except

possibly the start and goal. A solution path cannot be shortened without entering a

polygon which is not permitted in perfect-obstacle algorithms. When using Dijkstra's

algorithm it is possible to remove nodes from a path which result in less bends and

possibly a shorter path.

The postprocessing algorithm examines every ordered subset of three nodes {ni,n2,n3}

in a path set p. If the cost of line segment ni-»n3 is less than or equal to the cost of the

line segment ni-»n2-»n3 then {ni,n2,n3} is replaced with {ni,n3} in p.

Figure 4.5 represents a flat plateau bounded by a convex polygon. The start point S is

on the plateau and the goal G is to the left of the plateau on the plane. A search begins

with a search from S to find a path off the plateau to a point visible from G. Figure 4.5a

28

shows all points visible from G (small circles). The first node discovered on the perimeter

is p. The search continues from p to G and concludes with a line segment from p to G.

The path returned Q is {S,p,G}, shown in figure 4.5b.

The path improvement algorithm examines every ordered set of three nodes beginning

at the start coordinate. Path {S, p, G} is examined, and since the path segment S->p->G

is longer than the path segment S->G(figure 4.5c). Removing p shortens the global path,

therefore p is removed from Q. The final path Q is {S, G}, figure 4.5c.

Figure 4.5 Postprocessing

This approach uses a heuristic to solves the problem of start or goal inside polygons.

A point on the perimeter of a polygon is said to be visible from G, if ignoring all other

polygons, a line segment can be drawn from G to the point without entering the polygon.

Finding a point on the perimeter of a polygon visible from G may lead to global paths that

are far from the optimal path. A point on a perimeter of a polygon may be visible from G,

but may actually be hidden by many other polygons. These other polygons may force the

globally optimal path to go around to the back of the original polygon.

29

4.4 Summary

This algorithm performs a rapid approximation of the shortest path. The quality of

this solution is bound by the value of 8. In one extreme case 8 is set to the maximum

elevation of the topographic map (or greater). In this case the search space will be a flat

plane with no obstacles and all searches S-»G will return a straight line. In the other

extreme case 8 is set to one, and the algorithm will perform Dijkstra's algorithm across the

entire state space. The quality and time/space cost is a function of the resolution of the

contour interval.

Dynamic obstacles do not effect this algorithm. They are treated as polygons with QO

cost to enter. Searches through the center of dynamic obstacles would not be performed

since this would only return a path around the perimeter of the dynamic region polygon.

30

Chapter 5

EXPERIMENTAL RESULTS

5.1 Implementation

All algorithms were written in C and run on an Intel Pentium 166 machine. The

terrain elevation databases consisted of 90x60 arrays of integers that permitted detailed

analysis of the search algorithms. Most maps were generated with a random terrain

generator, which created hills of random heights at random coordinates. Some were

manually created to test worst case terrain. The 8 was chosen as the value of the base

plane of the elevation array. All elevation arrays are identified topo« where n is the

identifier to the array. Figure 5.1 is a 3-dimensional representation of one elevation array.

y axis

xaxis

Figure 5-1 3-Dimensional Representation of Elevation Array

31

Figure 5-2 is a 2-dimensional representation of the map, looking down onto the

terrain. The shade of a region corresponds to the elevation ofthat portion of the terrain.

White regions are on the low-cost regions of the plane. Light gray, dark gray, and finally

black regions have increasing values of elevation. High cost regions are bound by dotted

lines representing the boundary of high-cost convex polygon regions found during

preprocessing. Heavy dark lines are paths found using the geometrically guided search

algorithm and thinner lines are paths found by a Dijkstra search. The x and y axis are the

horizontal and vertical axis's on the map respectively. Points on the terrain are noted by

x-coordinate, y-coordinate.

path found by
geometrically
guided search
(BLACK)

start point

slight path
improvement
caused by
going over
end of ridge

hilltop

path found by Dijkstra
(GRAY)

Figure 5.2 2-Dimensional Map Representation

32

5.2 Test Method

A variety of maps have been used to test the algorithms throughout this thesis. Six

maps were chosen to summarize the results. The terrain data topo3 and topo6 were

added to test the worst case resulting from running Dijkstra algorithm on large

regions. All maps are found in the appendix.

• topol.map: The basic map used for initial research consisting of eight
various, almost convex outcroppings.

• topo2.map: A map with many, very small, convex regions.

• topo3.map: Two major mountain regions shaped as simple polygons whose
shape traps major regions inside their convex regions after preprocessing.

• topo4.map: Several long ridges as found in desert plain regions.

• topoS.map: A map with several large convex polygons.

• topoö.map: One large U-shaped ridge line that traps most of the planar map
inside its convex polygon after preprocessing.

5.3 Preprocessing

A preprocessing step represents a one-time fixed cost that must be taken into

account when evaluating an algorithm. In many applications this preprocessing can be

completed in advance and saved, thus save time during queries.

Simply adding the fixed preprocessing cost into the search time can be deceiving.

If only one search is performed and the preprocessing time is added to the search time, the

preprocessing will seem detrimental. As the number of searches increase the fixed cost is

divided over the number of searches performed. The preprocessing time per search will

33

approach zero as the number of searches approaches oo.

5.4 Search

Searches were performed and the results are summarized in table 5.1. An analysis

of the running time between the two algorithms showed an average decrease by a factor of

about four. Using the running time as a metric for performance can also be deceiving,

since the running time is implementation and machine dependent. The measure of the

number of nodes explored was used because it is not implementation specific and offers a

more scientific measurement.

Table 5.1 lists a number of searches performed on each of the six maps. The

specific searches were used to illustrate specific principles and issues. The first column of

the table is the terrain map. The second and third columns are the start and goal points on

the specific map and are illustrated in the appendix. The path costs are the costs that were

found for specific paths. The unimproved geometric search cost (UGMD) was included to

show the performance improvement of the postprocessing step. The percent change is the

increased cost of a path found by the geometrically modified Dijkstra (GMD) over the

standard Dijkstra's algorithm (D).

34

Table 5.1 Search Results

Terrain
Map

Search Path Cost Nodes Examined

Fig.
start
x,y

goal
x,y UGMD GMD D

% change
D to GMD GMD D

Ratio
D:GMD

Topol A(5,5) B(85,55) 103.46 103.5 100.71 2.66 15 1537 101.47
C(30,5) D(50,40) 68.44 68.44 64.93 5.13 4 2489 621.25 5.3
E(10,20) F(80,20) 119.55 118.7 118.67 0 10 4850 484.00 5.2
G(5,30) H(85,30) 136.56 136.6 131.18 3.94 10 4905 489.50

Topo2 A(5,5) B(85,55) 155.19 155.2 151.07 2.65 9 5351 593.56
C(10,21) D(80,21) 108.73 107.4 107.41 0 11 4477 406.00
E(20,35) F(65,25) 95.06 92.06 85.2 7.45 30 3946 130.53
G(20,20) H(40,55) 64.66 64.66 64.66 0 13 3286 251.77

Topo3 A(5,5) B(85,55) 172.88 170.4 170.4 0 7 5365 765.43
C(30,30) D(60,30) 53.25 53.25 53.25 0 90 1848 19.53
E(35,20) F(60,40) 83.33 82.8 75.06 9.35 636 3392 4.33
G(5,7) B 178.35 178.4 156.57 12.21 5 5352 1069.40

Topo4 A(5,25) B(85,25) 146.65 139.3 135.19 2.92 13 5265 404.00
C(10,18) D(85,55) 148.22 141 139.22 1.24 27 5352 197.22
E(45,2) F(45,40) 70.97 67.97 67.09 1.29 7 2628 374.43
G(70,40) H(5,20) 109.93 109.9 109.93 0 10 5010 500.00

Topo5 A(5,5) B(85,55) 158.1 155.5 151.07 2.82 1 5352 5351.00
C(25,40) D(80,5) 139.05 139.1 130.26 6.32 76 5266 68.29
C E(40,20) 101.12 80.49 76.97 4.37 111 2607 22.49 5.4
F(5,40) G(82,34) 138.9 137.1 136.26 0.64 13 4916 377.15

Topo6 A(5,5) B(85,55) 182.7 182.7 180.28 1.32 4 5369 1341.25
C(25,40) D(55,40) 77.71 77.71 77.71 0 2515 2515 0.00
E(40,35) F(55,55) 51.62 39.32 39.32 0 662 1166 0.76
E G(5,55) 82.5 78.11 70.2 10.13 662 3264 3.93

UGMD ~ unimproved geometrically modified Dijkstra's algorithm
GMD — postprocessed geometrically modified Dijkstra's algorithm
D — Dijkstra's algorithm

35

Three extreme cases are very interesting. Topo5 search from A->B represents a

path across the diagonal of the map that does not intersect any polygon. In this case

Dijkstra explored 99% of the map to find the path, while geometrically guided algorithm

only explored one node, the start point. The path cost is very close to the optimal path.

Topo3 search E—»F performs two searches to get out of two polygons, and combines

these paths with a line segment. The cost represents the worst case, often higher than the

Dijkstra path. Topo6 search C—»D represents both the start and goal inside a single

polygon, so the resultant path is equal to the standard Dijkstra algorithm.

Table 5-2 Comparison of 200 Runs of GMD vs Dijkstra Searches

Increase
Map in path

cost
topol 5.48%
topo2 0.62%
topo3 7.50%
topo4 2.32%
topo5 7.49%
topoö 11.91%
Average 6.05%

The results in Table 5.2 are from 200 random searches on each input map. The

results illustrated in table 5.2 show a slight increase in cost. The increase in path cost was

minimal on maps with smaller high-cost regions (1,2,4), with the geometrically guided

algorithm returning near optimal paths. On these maps' paths found through the high-cost

regions, when combined with line segments outside these regions, approach optimal paths.

36

Elevation arrays are approximations of the real terrain, and errors are introduced

into the elevation array during the geocoding process. Node searching introduces

digitization bias on the path, and rounding errors are introduced when working with real

numbers on digital systems. Since the actual input and processing produce rough

approximations to the actual terrain and paths, the percentage of change in search cost

was not significant.

The search effort, as measured by the number of nodes explored, was very small

on sparse maps. Long, relatively flat regions were "jumped over" quickly rather than

searched one node at a time. The algorithm jumps from the start to nodes on the

perimeter of obstacles in the direction of the goal. The algorithm does not explore any

nodes except those on the perimeter or inside obstacles, resulting in a tremendous effort

reduction on sparse maps.

In sparse maps the search quickly found line segments to paths outside polygons

and could perform quick heuristic searches in the small convex polygons. The effort for

these searches was very small because sparse areas are quickly jumped over rather than

searched one node at a time.

37

UGMD

C^—GMD

■s'MI^Mm^M^P

Figure 5.3 Path Avoiding Polygons

Figure 5.3 is a typical search where neither start nor end points are inside convex

polygons. The cost between Dijkstra and geometric search are close, but the path

returned from the geometrically guided search (dark line) is a smoother, direct route.

When a line segment projected from the start to the goal intersected a polygon the

algorithm found three paths; left, right, and through the polygon. The right path (from C

to D) was found to have a lower cost. The path is a line segment from the start point to

the right tangent point, to the goal.

38

path found
from Dijkstra

Figure 5.4 Start and End Inside Polygons

Figure 5.4 is an example of a path with both the start and goal inside polygons.

Dijkstra's algorithm returns an optimal path. The geometrically guided algorithm quickly

found a path out of the polygons to reduce the search effort, and completes the route to

the goal. The postprocessing determined that it could prune off some of the route making

the global path shorter and more direct to the goal.

The worst cost paths were those with large convex polygon regions. This

performance is attributed to the large node-generating searches that must be performs, in

addition to the overhead of the geoguided search. On these regions the preprocessing

bounds large areas of low-cost regions inside perimeters when it converts polygons from

simple to convex.

If both the start and goal are in the same polygon then the search is simply a

39

Dijkstra search. If the start and goal are outside these regions, the algorithm quickly finds

a path around without searching the entire map. If a start or goal are inside a regions a

Dijkstra search is performed to find a path quickly out of the polygon to a point visible

from the goal, and this path is connected with other paths to create a solution path. This

connecting of path segments can result in high-cost solution paths if optimal subpaths do

not combine to an optimal global path.

Path found
from GMD path found

fromUGMD

-*'lt';;^":";^ S

_ :■■■.■:«■!"

TT

■■■■■■■■■■ ■;'.'!>;*■;

-—Path found from
f Dijkstra's algorithm

Figure 5.5 Search With Large High-Cost Regions

In maps with many regions the geometrically guided search proved a dramatic

improvement by decreasing the number of nodes that must be explored. This is because

only nodes on the perimeter of polygons that are in the direction of the goal can be

labeled, resulting in a tremendous reduction in the number of nodes explored.

40

5.5 Postprocessing

The postprocessing is performed very rapidly, combining many locally optimal

paths into an improved global path. Its effect is to tie local path segments together and

globally improve the path. The geoguided search finds a route quickly out of the polygon.

The postprocessing prunes nodes off the path, which globally improves the path.

The postprocessing step improved the paths, in some instances dramatically. In

figure 5.6 a path was quickly found out of the high-cost region, and to the goal. This path

is far from optimal. The path improvement step is applied, tuning local paths to a better

global path solution.

+

original
unimproved
geometrically
guided path

pijkstra's Path

improved
geometrically
guided search
path

Figure 5.6 Example of Postprocessing

41

Chapter 6

CONCLUSION /RECOMMENDATIONS FOR FUTURE WORK

6.1 Conclusion

Searching on topographical maps continues to be an interesting problem. The

problem offers many challenges due to the diversity of the Earth's terrain, man-made

modifications to the natural terrain, and the applications for which a path is being found.

Current research continues to investigate the shortest path problem in many fields of

study.

The three step approach applied in this thesis proved to be very effective. From

the experimental results the thesis can be summarized as follows:

1. A quick preprocessing step provides the main search routine with a small amount of
very important global information that can dramatically reduce the search effort and
time.

2. The additional space needed for the preprocessed information is offset by the reduced
amount of space needed during the main search routine. The preprocessed path costs
eliminated repetitive searches through rough terrain that is very costly to search.

3. The main search routine jumps over flat terrain and does not waste time and space
searching flat terrain. This jumping across flat terrain saves tremendously on the
search effort.

4. The postprocessing step provides global path improvement and path straightening.
The solution from the postprocessing may take a significant smaller amount of space
since it transforms straight paths of nodes to a line segment of two nodes.

42

6.2 Future Work

A possible direction for future work is precomputing implicit roads. The

motivation behind precomputing implicit roads is that on certain terrain, paths gravitate

toward locations that are easy to travel. These paths are like trails made in the wilderness

because man and beast tend to travel on certain types of terrain. The implicit roads

algorithm used a precomputation step that recursively partitions the landscape into smaller

and smaller pieces along these implicit roads. The solution of the precomputing created a

network of implicit roads similar to skeletonization. When a path is needed between two

points, the algorithm finds a short path from the source to a road, travel through these

precomputed implicit roads, and compute a path from a road to the goal.

This thesis introduced many other unanswered questions that are open to the

inquisitive researcher. These areas include:

• Solve for Simple Polygons ~ The transformation from simple to convex polygons
during the precomputing step greatly simplifies the search problem and
precomputation space requirements. Eliminating the conversion to convex polygons
and solving the shortest path with simple polygons introduces many additional
challenges. On certain terrain simple polygons may prove beneficial to reduce the
search effort.

• Conversion to Contour Intervals ~ By repeated calls to the precomputing step for
an increasing value of 8, the elevation array topographical map is transformed into a
plane with concentric, closed (simple or complex) contour intervals. These intervals
bound regions whose elevations are greater than the contour value of 8. The search
does not use the elevation array, so after precomputing it can be permanently removed
from memory. The solution to a path query is solved as a computational geometry
problem.

• Shortest Path, Intermediate Point Data Structure — Any path segment contained
inside a shortest path is itself a shortest path. Using this observation, it makes sense to
store solution paths into an efficient data structure that can be quickly searched. When
solving a query the data structure is searched and returns the solution if found. If the

43

•

solution is not found then the problem is solved and the data structure is updated with
the solution. All paths cannot be stored efficiently as mentioned earlier (0(N2) for N
points on a map), so it makes sense to store special paths, perhaps implicit roads.
Using this data structure, not only the shortest path costs, but the actual paths could
be stored, eliminating any Dijkstra search through polygons.

Link Metric - Many applications are constrained by solution paths that have a
minimal number of bends or maximum angle of bends. Autonomous robot motion
planning and high-performance aircraft flight planning are examples of these
applications. Examination and comparison of algorithms based on the number and
extent of bends in the paths provides a rich area of research that is just beginning to be
explored.

Additional Topographical Map Data - the input for this research was simplified to
create a manageable search problem. Additional man-made terrain features can be
included to increase the complexity of the problem. Typical terrain features include
roads, rivers, bridges, fences, and tunnels.

Preprocessing on Demand ~ Rather than preprocess all shortest paths through
polygons, process them as needed and store them. This would resemble the system
learning the shortest paths through polygons and remembering them for future use.
This would eliminate the preprocessing costs, and slow initial searches, but would
result in searches only performed for actual paths needed.

Point inside Polygon ~ The current heuristics do not perform well all of the time
when a start or goal are inside a polygon. There are many difficulties that arise on real
terrain when computing the shortest path with large regions, providing an additional
area for future research.

44

APPENDIX

Maps Used for Analysis

-£-^
-G-4---4-

.*
:^s$.S

£>-

H

B

| A i | |

i i ! : | B |

(a)topol.map

G

MKJt'

.. ▼ J

:...„4;.^_.-(i:....

OF:
9:

B

(b)topo2.map

i/'T~f"r1S f'-EtT-^-TT"

l^jztij^ij^IlL
i A/V; i i ''/' \ \ 1 j'Ä "T B i

L-^-Z^-^C^FT----!-—4-
; ' j .J1'']jR' ! . j : i : :
1- ^-j, 1 „ 1 „ J, , ^ ...,„..

[D j

(c) topo3.map

<$±
I?

*?'fv

B

(d)topo4.map

- \-

G

+

----:2fe?|f3UÄW;i.--

B

(e) topo5.map (f)topo6.map

45

BIBLIOGRAPHY

[1] Bonnington, C. P., The Foundations of Topological Graph Theory. New York:
Springer-Verlag Press, 1995.

[2] Clarke, K.C., Analytical and Computer Cartography. New Jersey: Prentice Hall,
Englewood Cliffs, 1990.

[3] Gross, A., and Longin, L., " Digitizations Preserving Topological and Differential
Geometric Properties," Proceedings of SPIE, Vision Geometry III. vol. 2356, pp.
34-35, 2-3 Nov. 1994.

[4] Luger, G.F., Artificial Intelligence, Strategies and Structured for Complex Problem
Solving. New York: Benjamin Cummings Publishing, 1993.

[5] Mitchell, J.S.B., "An Algorithm Approach to Some Problems in Terrain
Navigation", Artificial Intelligence, vol. 37, pp.171 201, Dec. 1988.

[6] Fujimura, K., Motion Planning in Dynamic Environments. New York: Springer -
Verlag Press, 1991.

[7] Winston, W.L., Operations Research: Applications and Algorithms. Boston:
Duxbury Press, 1987.

[8] Rüssel, S. and Norvig, P., Artificial Intelligence, A Modern Approach. New
Jersey: Prentice Hall, 1995.

[9] Tanimoto, S., and Klinger, A., Structured Computer Vision - Machine perception
Through Hierarchical Computation Structures. New York: Academic Press, 1980.

[10] Preparata, F.P. and Shamos M.I., Computational Geometry An Introduction. New
York: Springer, 1985.

[11] Pearl, J., Heuristics, Intelligent Search Strategies for Computer Problem Solving.
Canada: Addison-Wesley Publishing, 1984.

[12] Manzini, Giovanni, "BUDA*: An Improved Perimeter Search Algorithm", Artificial
Intelligence vol. 75, pp. 347-360, 1995.

[13] Agrawal, R, and Jagadish, H.V., "Algorithms for searching massive graphs", IEEE
Transactions on Knowledge and Data Engineering, vol. 16, no. 2, pp. 225-238,
April 1994.

[14] Latombe, J., Robot Motion Planning. Maine: Kluwer Academic Publishers, 1991.

46

[15] Moravec, H.P., Robot Rover Visual Navigation. Michigan: UMI Press, 1981.

[16] Fan, K, and Po-Chang Lui, "Solving Find-Path Problem in Mapped Environment
Using Modified A* Algorithm", Transactions on Systems, Man, and Cybernetics.
vol. 24, no. 9, pp. 1390-1397, Sept 94.

[17] Crowley, J.L., "Navigation for an Intelligent Mobile Robot", IEEE J Robotics
Automation. RA-1, pp. 31-41, March 1985.

[18] O'Rourke, J., Computational Geometry in C. New York: University of Cambridge-
Verlag, 1993.

[19] Schwartz, J.T., Sharir M., Hopcroft J., Planning, Geometry, and Complexity- Ablix
Series in Artificial Intelligence. New Jersey: Ablex Publishing, 1987.

[20] Schwartz, J.T., and Sharir M., "A Survey of Motion Planning and Related
Geometric Algorithms", Artificial Intelligence, vol. 37, no.l, pp. 157-169, Dec
1988.

[21] Hwang, Y. K., "Gross Motion Planning - A Survey," ACM Computing Series, vol.
24, no. 3, pp. 219-291, September 1992.

[22] Kelley, A., Pohl I. A Book on C. Benjamin Cummings Publishing Co., 1995.

[23] Storer, J. A., "Shortest Paths in the Plane With Polygonal Obstacles", Journal of
ACM. vol. 41, no. 5, pp. 982-1012. 1994.

[24] Dillenburg ,J. F., and Nelson, P.C., "Perimeter Search", Artificial Intelligence vol.
65, pp. 165-178, 1994.

[25] Environmental Systems Research Institute. Cell-Based Modeling with GRID. 1991.

[26] Gondran, M., and Minoux, M., Graph and Algorithms. Paris: John Wiley & Sons
1984.

[27] Kimmel, R, and Kiryati, N., "Finding Shortest Paths on Surfaces by Fast Global
Approximation and Precise Local Refinement", SPIE Vision Geometry III vol
2356, pp. 198-209, 1994.

[28] Korf, R.,'Linear Space Best-First Search", Artificial Intelligence, vol. 62 pp 41-
78, 1993.

[29] Kuo-Chin Fan and Po-Chang Lui, "Solving Find-Path Problem in Mapped
Environments using Modified A* Algorithm", IEEE Transactions on Systems,
Man, and Cybernetics, vol. 24, no. 9, pp. 1390-1396, September 1994.

47

[30] Reif, J., "A Single-Exponential Upper Bound for Finding Shortest Path on Three
Dimensions", Journal of the ACM. vol. 41, no. 5, pp. 1013-1019, September 1994.

[31] Cormen, T., Introduction to Algorithms. Massachusetts: MIT Press, 1990.

48

